ABSTRACT
This project involves the design and implementation of an intelligent obstacle-avoiding robot car. The
objective of this project is to implement a robot car, which while moving should have the ability to
detect obstacles in its path and change direction where obstacles are present without any form of
external influence. The new direction to be taken to avoid collision is the direction that has the most
distance between the obstacle and the sensor and this is determined by the robot based on sensor
inputs.
This implementation was done using an ultrasonic wave sensor, which measures distance by sending
pulses. Also, the movement of the servo motor (for sensor movement) and the DC motors (for wheel
movement) are controlled by the motor driver shield in order to enable the obstacle avoidance
function. The commands are sent to the Arduino microcontroller chip which serves as the main control
of the robot car, as it controls the sensor and car movement.
The implemented robot car was able to successfully detect and avoid obstacles within the line of sight
of the Ultrasonic sensor used.
ARI, M (2021). Arduino Based Obstacle Avoidance Robot Car. Afribary. Retrieved from https://track.afribary.com/works/arduino-based-obstacle-avoidance-robot-car-1
ARI, MICHAEL "Arduino Based Obstacle Avoidance Robot Car" Afribary. Afribary, 07 Apr. 2021, https://track.afribary.com/works/arduino-based-obstacle-avoidance-robot-car-1. Accessed 15 Jan. 2025.
ARI, MICHAEL . "Arduino Based Obstacle Avoidance Robot Car". Afribary, Afribary, 07 Apr. 2021. Web. 15 Jan. 2025. < https://track.afribary.com/works/arduino-based-obstacle-avoidance-robot-car-1 >.
ARI, MICHAEL . "Arduino Based Obstacle Avoidance Robot Car" Afribary (2021). Accessed January 15, 2025. https://track.afribary.com/works/arduino-based-obstacle-avoidance-robot-car-1