Abstract This project is concerned with the review of some boundary value problems for nonlinear ordinary differential equations using topological and variational methods. A more classical boundary value problems for ordinary differential equations (like the boundary value problems on a ball, initial value problems, problems on annular domains and positone problems) which represent the main interest of a wide number of researchers in the world is studied.
Contents
Certification ii
Dedication iii
Acknowledgement iv
Abstract viii
1 Introduction 1
2 Literature Review 3
3 Preliminaries 6
3.1 Homeomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Boundary Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Leray-Schauder Fixed Point Theorem . . . . . . . . . . . . . . . . . . . . . 14
3.5 Quasilinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.1 Quasilinear Equation Of Second Order . . . . . . . . . . . . . . . . 16
4 Main Result 18
vi
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Tools Of Analysis And Organization . . . . . . . . . . . . . . . . . . . . . 20
4.3 Boundary Value Problems On a Ball . . . . . . . . . . . . . . . . . . . . . 20
4.3.1 Equivalent Integral Equation . . . . . . . . . . . . . . . . . . . . . . 20
4.3.2 Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.3 On The Principal Eigenvalues . . . . . . . . . . . . . . . . . . . . . 23
4.3.4 On The Principal Eigenvalue of The p - Laplacian . . . . . . . . . . 28
4.3.5 On The Higher Eigenvalues . . . . . . . . . . . . . . . . . . . . . . 28
4.4 On Initial Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Problems Of Annular Domain . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5.1 Fixed Point Formulation . . . . . . . . . . . . . . . . . . . . . . . . 32
4.6 Positone Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Reference 39
ONUBEDO, A (2022). Boundary Value Problems for Quasilinear Second Order Differential Equations. Afribary. Retrieved from https://track.afribary.com/works/boundary-value-problems-for-quasilinear-second-order-differential-equations
ONUBEDO, AUDU "Boundary Value Problems for Quasilinear Second Order Differential Equations" Afribary. Afribary, 16 Oct. 2022, https://track.afribary.com/works/boundary-value-problems-for-quasilinear-second-order-differential-equations. Accessed 23 Nov. 2024.
ONUBEDO, AUDU . "Boundary Value Problems for Quasilinear Second Order Differential Equations". Afribary, Afribary, 16 Oct. 2022. Web. 23 Nov. 2024. < https://track.afribary.com/works/boundary-value-problems-for-quasilinear-second-order-differential-equations >.
ONUBEDO, AUDU . "Boundary Value Problems for Quasilinear Second Order Differential Equations" Afribary (2022). Accessed November 23, 2024. https://track.afribary.com/works/boundary-value-problems-for-quasilinear-second-order-differential-equations