DETERMINATION OF AQUIFER PARAMETERS IN THE ISHIAGU EBONYI STATE USING GEOELECTRIC METHOD

ABSTRACT

An investigation was carried out on the groundwater potentials and aquifer protective capacity of Ishiagu area, southeastern Nigeria. The study area lies within the lower Benue trough of Nigeria and is underlain by the Albian Asu River Group and the Turonian Ezeaku Shales.The methodologies employed in the study include measurements of static water levels of 15 hand dug wells, pumping tests carried out on 4 boreholes and vertical electrical sounding (VES) of 20 stations. Groundwater potentials of the area was thoroughly characterizedusing aquifer parameters of hydraulic conductivity and transmissivity within unit cells.These parameters were supplemented with those determined from empirical relationships.The hydraulic conductivity and transmissivity determined from the pumping test data range from 0.6m/day to 3.04m/day and 4.86m2/day to 34.93m2/day respectively while those from empirical relationships range from 0.04m/day to 4.34m/day and 0.07m2/day to 61.69m2/day respectively.Three groundwater potential ratings were defined based on the aquifers’ hydraulic conductivity and transmissivity data; poor (45%), fairly good (35%) and good (20%). The hydraulic head map reveals two divergence and two convergence zones. The computed hydraulic heads range from 58.2m to 84.5m.Vertical electrical sounding reveals that the area is characterized by 4-, 5- and 6- subsurface geo-electric layers with the 6-layer type being the dominant type. Longitudinal unit conductance of the 20 VES stations was estimated from the layers’ resistivity and thickness data.Longitudinal unit conductance of the overburden units ranged from 0.07mhos to 2.22mhos. Based on the estimated longitudinal unit conductance, three aquifer protective capacity types were defined namely, weak (25%), moderate (40%) and good (35%). It was observed that areas of good groundwater potentials also have good aquifer protective capacity. Groundwater development should therefore be concentrated more in areas of good groundwater potential for continuous/steady supply of potable water.  


TABLE OF CONTENTS

TABLE OF CONTENT                                                                                      PAGES

TITLE PAGES                                                                                                             ii

CERTIFICATIONiii

DEDICATIONiv

ACKNOWLEDGEMENTv

ABSTRACT                                                                                  vi

TABLE OF CONTENT                                                                                               vii

LIST OF TABLES ix

LIST OF FIGURESx

LIST OF APPENDICESxi

CHAPTER ONE: INTRODUCTION

1.1 Background Information 1

1.2 Objectives of the study                                                                                             2

1.3 Location and Accessibility                                                                                       2

1.4Drainage, Climate and Vegetation                                4

1.5Literature review                                                                                                      4


CHAPTER TWO: GENERAL GEOLOGY AND HYDROGEOLOGY

2.1 Regional Geology 7

2.2 Hydrogeology9


CHAPTER THREE: MATERIALS AND METHODS 

3.1 Study materials                                                                         12

3.2 Field study method                              12

3.3 Field data presentation and interpretation                                                              17

3.4 Data Analysis                                                                                                         17


CHAPTER FOUR: RESULTS AND DUSCUSSION

4.1 Groundwater flow direction                                                                                   21

4.2 Qualitative results of VES                                                             21

4.3 Quantitative results of VES                                                         27

4.4 Groundwater Potential                                                                                            34

4.5 Aquifer protective capacity                                                                                    34

CHAPTER FIVE: CONCLUSIONS

REFERENCES                               45

APPENDICES                              50


LIST OF TABLES

Table1. Elevation and depth data from hand dug wells                                              22
Table 2VES and WELLS location with coordinates                                      24
Table 3 Thickness, depth and Resistivity of layers in sounding points                      25
Table 4 Frequency distribution of curve types                                                           26
Table 5 Frequency and percentage distribution of different layer models                 31
Table 6 Summary of aquifer parameters                                                                    35
Table 7 Classification of aquifer based on transmissivity                                         36
Table 8 Modified model longitudinal conductance/protective capacity rating         39
Table 9 Aquifer protective capacity rating across sounding locations                      40
Table 10 Summary of aquifer protective capacity                                                    41


LIST OF FIGURES

1 Map of Ishiagu area showing accessibility and drainage          3
2 Regional stratigraphic map of   Study Area                              10
3 Map showing local geology of the Ishiagu area                       11
4 Sampling station map                                                                14
5 Illustration of the of Schlumberger Array 15
6 Taking reading in one of the field locations                            16
7 Groundwater flow direction map                                             23
8 Typical HA Curve from one of the study locations                                            28
9 Typical HKHK Curve from one of the study locations                                        29
10 Typical HKQH Curve from one of the study locations                                        30
11 Geoelectric sections of VES 9, VES 4, VES 17, VES 3    32                           
12 Geoelectric sections of VES 9, VES 6, VES 10, VES 12                                33
13 Groundwater Potentials Map of the Study Area                                                   37
14 Aquifer Protective Capacity Map of the Study Area                                            43

Overall Rating

0

5 Star
(0)
4 Star
(0)
3 Star
(0)
2 Star
(0)
1 Star
(0)
APA

OKAFOR, N (2022). DETERMINATION OF AQUIFER PARAMETERS IN THE ISHIAGU EBONYI STATE USING GEOELECTRIC METHOD. Afribary. Retrieved from https://track.afribary.com/works/determination-of-aquifer-parameters-in-the-ishiagu-ebonyi-state-using-geoelectric-method

MLA 8th

OKAFOR, NGWOKE "DETERMINATION OF AQUIFER PARAMETERS IN THE ISHIAGU EBONYI STATE USING GEOELECTRIC METHOD" Afribary. Afribary, 19 May. 2022, https://track.afribary.com/works/determination-of-aquifer-parameters-in-the-ishiagu-ebonyi-state-using-geoelectric-method. Accessed 23 Nov. 2024.

MLA7

OKAFOR, NGWOKE . "DETERMINATION OF AQUIFER PARAMETERS IN THE ISHIAGU EBONYI STATE USING GEOELECTRIC METHOD". Afribary, Afribary, 19 May. 2022. Web. 23 Nov. 2024. < https://track.afribary.com/works/determination-of-aquifer-parameters-in-the-ishiagu-ebonyi-state-using-geoelectric-method >.

Chicago

OKAFOR, NGWOKE . "DETERMINATION OF AQUIFER PARAMETERS IN THE ISHIAGU EBONYI STATE USING GEOELECTRIC METHOD" Afribary (2022). Accessed November 23, 2024. https://track.afribary.com/works/determination-of-aquifer-parameters-in-the-ishiagu-ebonyi-state-using-geoelectric-method