EFFECTS OF PROCESSING METHODS ON THE PHYSICO-CHEMICAL PROPERTIES OF SWEET POTATO AND SORGHUM.

81 PAGES (10687 WORDS) Biochemistry Project

ABSTRACT
This study evaluated "the effects of processing methods on the physico-chemical properties of sweet potato and sorghum flour". Sweet potato (Ipomoea batatas) is an important food crop in the tropical and sub-tropical countries and belongs to the family convolvulaceae. Sweet potatoes are rich in dietary fiber, minerals, vitamins, and anti oxidants such as phenolic acids, anthocyannins, tocopherol and β-carotene. The proximate composition of sweet potato was determined and these include moisture, lipids, ash, protein, carbohydrates and fiber. In carrying out the analysis practically, methods used vary according to the food material. The anti oxidants were also determined alongside with phenol oxidase, pasting properties, minerals and sugar contents. Sorghum is a tropical plant belonging to the family of poaceae. More than 35% of sorghum is grown for human consumption. The analyses carried out in sweet potatoes are same with sorghum with the exclusion of phenol oxidase.

TABLE OF CONTENTS
TITLE PAGE
CERTIFICATION
DEDICATION
ACKNOWLEDGEMENT
ABSTRACT
TABLE OF CONTENTS

CHAPTER ONE: INTRODUCTION

CHAPTER TWO: LITERATURE REVIEW
2.1. ORIGIN AND DISTRIBUTION OF SWEET POTATO
2.1.1. DESCRIPTION OF SWEET POTATO PLANT
2.1.2. USES OF SWEET POTATO
2.1.3. NUTRITIONAL VALUE OF SWEET POTATO
2.1.4. ANTI- NUTRITIONAL FACTORS
2.1.5. NUTRIENT COMPOSITION OF SWEET POTATO
2.1.5.1. POLYPHENOLS COMPOSITION
2.1.5.2. ANTI-OXIDATIVE, ANTI-MUTAGENICITY AND ANTI-
CARCINOGENICITY
2.1.6. ANTI-DIABETES
2.1.7. ANTI-NUTRIENTS IN SWEET POTATO
2.1.8. ENZYME COMPOSITION OF SWEET POTATO
2.2. ORIGIN AND DISTRIBUTION OF SORGHUM PLANT
2.2.1. DISTRIBUTION OF SORGHUM PLANT
2.2.2. USES OF SORGHUM
2.2.3. ENZYME COMPOSITION OF SORGHUM
2.2.4. NUTRITIONAL COMPOSITION OF SORGHUM
2.2.5. ANTI-NUTRIENTS IN SORGHUM

CHAPTER THREE: MATERIALS AND METHODS
3.1. MATERIALS
3.2. METHODOLOGY
3.2.1. PROCESSING OF SWEET POTATO TUBER
3.2.2. PROCESSING OF SORGHUM GRAIN
3.3. SWEET POTATO AND SORGHUM ANALYSIS
3.3.1. PROXIMATE ANALYSIS
3.3.1.0. DETERMINATION OF FAT CONTENT
3.3.1.1. DETERMINATION OF ASH CONTENT
3.3.1.2. DETERMINATION OF CRUDE FIBRE
3.3.1.3. DETERMINATION OF MOISTURE CONTENT
3.3.1.4. DETERMINATION OF PROTEIN
3.3.1.5. DETERMINATION OF CARBOHYDRATES
3.4. ANTI-NUTRIENTS AND PHYTOCHEMICALS
3.4.1. DETERMINATION OF TANNINS
3.4.2. DETERMINATION OF HYDROCYANIC ACID
3.4.3. DETERMINATION OF ANTHOCYANNINS
3.4.4. DETERMINATION OF PHYTATE/PHYTIC ACID
3.5. DETERMINATION OF MINERAL CONTENT
3.5.1. MAGNESIUM
3.5.2. IRON
3.5.3. ZINC
3.5.4. PHOSPHOROUS
3.5.5. POTASSIUM
3.6. DETERMINATION OF PASTING PROPERTIES
3.7. DETERMINATION OF PHENOL OXIDASE
3.8. DETERMINATION OF REDUCING SUGARS; FRUCTOSE,
GLUCOSE AND SUCROSE

CHAPTER FOUR: RESULTS AND DISCUSSION
4.1. TABLE 1: PROXIMATE COMPOSITION OF THE SAMPLES
AND DISCUSSION
4.2. TABLE 2: MINERAL COMPOSITION OF SAMPLES AND
DISCUSSION
4.3. TABLE 3: PHYTOCHEMICAL COMPOSITION OF THE
SAMPLES AND DISCUSSION
4.4. TABLE 4: PHYSICO-CHEMICAL PROPERTIES OF
SAMPLES AND DISCUSSION
4.4. TABLE 5: SUGAR COMPOSITION OF THE SAMPLES
AND DISCUSSION

CHAPTER FIVE: CONCLUSION
REFERENCES