Numerical solution of dynamic vibration equation, ܠሷൌ ܐ܋܍ܛ ܠ

Abstract/Overview

In this paper, we examine conservative autonomous dynamic vibration equation, f(x) = sech x which is time vibration of the displacement of a structure due to the internal forces, with no damping or external forcing. Numerical results using New mark method are tabulated and then represented graphically. Further the stability of the algorithms employed is also discussed

Overall Rating

0

5 Star
(0)
4 Star
(0)
3 Star
(0)
2 Star
(0)
1 Star
(0)
APA

A., O (2024). Numerical solution of dynamic vibration equation, ܠሷൌ ܐ܋܍ܛ ܠ. Afribary. Retrieved from https://track.afribary.com/works/numerical-solution-of-dynamic-vibration-equation

MLA 8th

A., Ochieng "Numerical solution of dynamic vibration equation, ܠሷൌ ܐ܋܍ܛ ܠ" Afribary. Afribary, 04 Jun. 2024, https://track.afribary.com/works/numerical-solution-of-dynamic-vibration-equation. Accessed 23 Nov. 2024.

MLA7

A., Ochieng . "Numerical solution of dynamic vibration equation, ܠሷൌ ܐ܋܍ܛ ܠ". Afribary, Afribary, 04 Jun. 2024. Web. 23 Nov. 2024. < https://track.afribary.com/works/numerical-solution-of-dynamic-vibration-equation >.

Chicago

A., Ochieng . "Numerical solution of dynamic vibration equation, ܠሷൌ ܐ܋܍ܛ ܠ" Afribary (2024). Accessed November 23, 2024. https://track.afribary.com/works/numerical-solution-of-dynamic-vibration-equation