Abstract
The focus of this research work is to derive a model that will be used to obtain the adsorption efficiency of an adsorbent for the removal of lead and copper from waste water. To date, the prevalence of adsorption separation remains an aesthetic attention and consideration abroad the nations owning to its low cost, simplicity of design, ease of operation, insensitivity to toxic substances and complete removal of pollutants even from solutions. The data points for this work were collected from literature. Two numerical methods were used in deriving the model, both the multiple regression analysis for data formulation and the Gauss reduction methods for the solutions of the equation. In adsorption procedures, the effects of temperatures, effect of pH, effect of contact time and effect of adsorbent dosage must be available and can be easily implemented into the model equations. Results obtained showed an increase in the adsorption with increasing temperature, contact time, adsorbent dosage and pH. The coefficient of correlation R2 values indicates a very good fitness of the adsorption data signifying the application of the model is suitable for obtaining adsorption efficiency of an adsorbent for the removal of lead and copper in waste water treatment.
TABLE OF CONTENTS
Acknowledgement ii
Table of Contents iii
List of Tables vii
List of Figures viii
List of Abbreviations ix
List of Symbols x
Abstract xi
CHAPTER ONE
INTRODUCTION
1.1. Background of study ………………………………….. 1
1.2. Statement of problem …………………………………... 4
1.3. Objectives of Study …………………………………... 5
1.4. Scope of Work ………………………………….. 5
1.5. Relevance of Research Work ………………………………….. 5
CHAPTER TWO
LITERATURE REVIEW ………………………………….. 6
2.1. Introduction to Adsorption theory ……………………………… 8
2.2. Relevance of Adsorption ……………………………… 8
2.3. Methods of adsorption ………………………………. 9
2.4. Factors affecting adsorption include …………………………. 10
2.5. Adsorption Equilibria ………………………………….. 10
2.5.1. Langmuir Adsorption Isotherm ………………………………. 11
2.5.2. Freundlich Adsorption Isotherm …………………………….. 12
2.5.3. BET adsorption isotherm ……………………………………… 12
2.6. Activated Carbon ……………………………………………. 13
2.6.1. History of activated carbon and summary of its uses ………… 14
2.6.2. Properties of Activated Carbon …………………………….. 16
2.6.2.1. Iodine number ……………………………………………… 17
2.6.2.2. Molasses …………………………………………..... 18
2.6.2.3. Tannin ……………………………………………….. 19
2.6.2.4. Methylene blue ……………………………………………… 19
2.6.2.5. Dechlorination …………………………………………….. 20
2.6.2.6. Apparent density …………………………………………. 20
2.6.2.7. Hardness/abrasion number ………………………………… 20
2.6.2.8. Ash content ……………………………………………. 20
2.6.2.9. Carbon tetrachloride activity …………………………….. 21
2.6.2.10.Particle size distribution ……………………………… 21
2.6.3. Preparation of Activated Carbon …………………………… 21
2.6.3.1. Physical Activation ………………………………………. 22
2.6.3.2. Chemical activation ……………………………………… 24
2.6.4. Types of Activated Carbon ………………………………….. 26
2.6.4.1. Powdered activated carbon (PAC) ………………………… 26
2.6.4.2. Granular Activated Carbon (GAC) ………………………… 26
2.6.4.3. Extruded activated carbon (EAC) ………………………… 27
2.6.4.4. Impregnated carbons ……………………… 27
2.6.4.5. Polymer coated carbon ……………………………… 28
2.6.4.6. Pellet Activated Carbon …………………………… 28
2.7. Common Adsorbents ……………………………….. 28
2.8. Copper in the environment ………………………………. 29
2.8.2. Effects of copper ……………………………………………….. 31
2.9. Lead in the Environment ……………………………………… 33
2.9.1. Effects of lead …………………………………………….. 35
2.10. Wastewater; Concept / Principle ………………………………. 37
2.10.1. Sources of Wastewater ……………………………………… 37
2.10.2. Wastewater constituents ……………………………………… 39
2.10.2.1. Physical Characteristics ………………………............. 40
2.10.2.2. Biological Characteristics ……………………...................... 40
2.10.2.3. Chemical Characteristics ………………………………... 41
2.10.3. Wastewater Treatment Methods & Disposal ………………… 41
2.10.3.1. Physical wastewater treatment methods ………………......... 42
2.10.3.2. Chemical wastewater treatment methods ………………….. 44
2.10.3.3. Biological wastewater treatment methods ………………….. 45
2.10.3.4. Preliminary Treatment ………………………………………. 47
2.10.3.5. Primary Treatment ………………………………………. 47
2.10.3.6. Secondary Treatment ……………………………………… 48
2.10.3.7. Sludge Treatment ……………………………………….. 50
2.10.3.8. Tertiary and Advanced Wastewater Treatment ………………… 51
CHAPTER THREE
RESEARCH METHODOLOGY ………………………………..... 53
3.1. Model formulation ……………………………………….. 53
3.2. Data analysis ……………………………………………… 54
3.3. Solution of the equations …………………………………… 54
3.4. Investigation of adsorption parameters …………………….. 54
3.4.1. Effect of temperature ……………………………………… 54
3.4.2. Effect of pH ……………………………………………….. 55
3.4.3. Effect of contact time …………………………………. 55
3.4.4. Effect of adsorbent dosage ……………………………... 55
3.4.5. Adsorption efficiency, η ……………………………....... 56
3.5. Model formation …………………………………... 56
3.6. Data Analysis for Lead …………………………………… 58
3.7. Data analysis for Copper ………………………………….. 63
CHAPTER FOUR
RESULTS AND DISCUSSION ………………………………… 68
4.1. Result Analysis ………………………………………… 68
4.1.1. Effect of pH ………………………………………… 68
4.1.2. Effect of Adsorbent Dosage, ……………………………… 71
4.1.3. Effect of Contact Time, t ………………………………….. 73
4.1.4. Effect of Temperature, θ ………………………………… 75
CHAPTER FIVE
SUMMARY, CONCLUSION AND RECOMMENDATION …. 78
5.1 Summary ………………………………………………………. 78
5.2. Conclusion ……………………………………………. 78
5.3. Recommendation ……………………………………… 79
REFERENCE …………………………………………… 80
Consults, E. & JOY, O (2022). Modelling of Adsorption Efficiency for the Removal of Lead and Copper from Waste Water. Afribary. Retrieved from https://track.afribary.com/works/modelling-of-adsorption-efficiency-for-the-removal-of-lead-and-copper-from-waste-water-2
Consults, Education, and ONOSHAKPOKAE JOY "Modelling of Adsorption Efficiency for the Removal of Lead and Copper from Waste Water" Afribary. Afribary, 30 Nov. 2022, https://track.afribary.com/works/modelling-of-adsorption-efficiency-for-the-removal-of-lead-and-copper-from-waste-water-2. Accessed 30 Nov. 2024.
Consults, Education, and ONOSHAKPOKAE JOY . "Modelling of Adsorption Efficiency for the Removal of Lead and Copper from Waste Water". Afribary, Afribary, 30 Nov. 2022. Web. 30 Nov. 2024. < https://track.afribary.com/works/modelling-of-adsorption-efficiency-for-the-removal-of-lead-and-copper-from-waste-water-2 >.
Consults, Education and JOY, ONOSHAKPOKAE . "Modelling of Adsorption Efficiency for the Removal of Lead and Copper from Waste Water" Afribary (2022). Accessed November 30, 2024. https://track.afribary.com/works/modelling-of-adsorption-efficiency-for-the-removal-of-lead-and-copper-from-waste-water-2